DNA Damage and Cellular Stress Responses The Incorporation of 5-Fluorouracil into RNA Affects the Ribonucleolytic Activity of the Exosome Subunit Rrp6
نویسنده
چکیده
5-Fluorouracil (5FU) is a fluoropyrimidine used for the treatment of solid tumors. 5FU is a precursor of dTTP and UTP during biogenesis, and it interferes with both DNA and RNA metabolism. The RNA exosome, a multisubunit complex with ribonucleolytic activity, has been identified as one of the targets of 5FU in yeast. Studies in human cells have shown that the catalytic subunit of the nuclear exosome, Rrp6, is specifically targeted. Here, we have investigated the direct effect of 5FU on the activity of Rrp6 in Drosophila S2 cells, and we have identified two aspects of Rrp6 function that are altered by 5FU. First, gel filtration analysis revealed that the repertoire of multimolecular complexes that contain Rrp6 is modified by exposure to 5FU, which is consistent with the proposal that incorporation of 5FU into RNA leads to the sequestration of Rrp6 in ribonucleoprotein complexes. Second, the incorporation of 5FU into RNA renders the RNA less susceptible to degradation by Rrp6, as shown by Rrp6 activity assays in vitro. Our results imply that aberrant transcripts synthesized in 5FU-treated cells cannot be turned over efficiently by the surveillance machinery. Together with previous results on the mechanisms of action of 5FU, our findings suggest that the cytotoxicity of 5FU at the RNA level is the result of at least three different effects: the increased levels of retroviral transcripts with mutagenic potential, the reduced synthesis of ribosomes, and the inhibition of the nuclear RNA surveillance pathways. Drugs that reinforce any of these effects may boost the cytotoxicity of 5FU. Mol Cancer Res; 9(3); 1–9. 2011 AACR.
منابع مشابه
The incorporation of 5-fluorouracil into RNA affects the ribonucleolytic activity of the exosome subunit Rrp6.
5-Fluorouracil (5FU) is a fluoropyrimidine used for the treatment of solid tumors. 5FU is a precursor of dTTP and UTP during biogenesis, and it interferes with both DNA and RNA metabolism. The RNA exosome, a multisubunit complex with ribonucleolytic activity, has been identified as one of the targets of 5FU in yeast. Studies in human cells have shown that the catalytic subunit of the nuclear ex...
متن کاملThe Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome
The eukaryotic RNA exosome is an essential, multi-subunit complex that catalyzes RNA turnover, maturation, and quality control processes. Its non-catalytic donut-shaped core includes 9 subunits that associate with the 3' to 5' exoribonucleases Rrp6, and Rrp44/Dis3, a subunit that also catalyzes endoribonuclease activity. Although recent structures and biochemical studies of RNA bound exosomes f...
متن کاملNuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3.
The eukaryotic RNA exosome is an essential and conserved 3'-to-5' exoribonuclease complex that degrades or processes nearly every class of cellular RNA. The nuclear RNA exosome includes a 9-subunit non-catalytic core that binds Rrp44 (Dis3) and Rrp6 subunits to modulate their processive and distributive 3'-to-5' exoribonuclease activities, respectively. Here we utilize an engineered RNA with tw...
متن کاملRNA-based 5-fluorouracil toxicity requires the pseudouridylation activity of Cbf5p.
The chemotherapeutic drug 5-fluorouracil (5FU) disrupts DNA synthesis by inhibiting the enzymatic conversion of dUMP to dTMP. However, mounting evidence indicates that 5FU has important effects on RNA metabolism that contribute significantly to the toxicity of the drug. Strains with mutations in nuclear RNA-processing exosome components, including Rrp6p, exhibit strong 5FU hypersensitivity. Stu...
متن کاملActivities of human RRP6 and structure of the human RRP6 catalytic domain.
The eukaryotic RNA exosome is a highly conserved multi-subunit complex that catalyzes degradation and processing of coding and noncoding RNA. A noncatalytic nine-subunit exosome core interacts with Rrp44 and Rrp6, two subunits that possess processive and distributive 3'-to-5' exoribonuclease activity, respectively. While both Rrp6 and Rrp44 are responsible for RNA processing in budding yeast, R...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011